Array-Oriented
Programming with NumPy
- Part 1

1. Introduction
2. Creating an array using different approaches (Constructors)
3. Indexing and slicing (Getter and Setter)

4. NumPy calculation methods (Reduction)

1. Introduction

The NumPy (Numerical Python) library is the favored Python array implementation. It
provides a high-performance, feature-rich -dimensional array type called array . Array
operations are typically one or two orders of magnitude faster than those on lists.

The NumPy (Numerical Python) library is the favored Python array implementation. It
provides a high-performance, feature-rich -dimensional array type called array . Array
operations are typically one or two orders of magnitude faster than those on lists.

Although the built-in 1ists can also possess multiple dimensions and be processed

using nested loops. A key advantage of NumPy is "array-oriented programming,” which
employs functional-style programming and internal iteration to make array
manipulation concise and straightforward, reducing the likelihood of bugs that can arise
from explicitly programmed loops.

The NumPy (Numerical Python) library is the favored Python array implementation. It
provides a high-performance, feature-rich -dimensional array type called array . Array
operations are typically one or two orders of magnitude faster than those on lists.

Although the built-in 1ists can also possess multiple dimensions and be processed

using nested loops. A key advantage of NumPy is "array-oriented programming,” which
employs functional-style programming and internal iteration to make array
manipulation concise and straightforward, reducing the likelihood of bugs that can arise
from explicitly programmed loops.

\Y

s 3

R [1

for e in V: R
R.append (e*s)

[, 9, 2, 81

: np.array([1, 9, 2, 81)
3

s*V

6]
o

In Python, we don't have to declare types or handle memory by hand. Every variable

holds more than just the value itself— they also include additional information about the
value's type and size:

In Python, we don't have to declare types or handle memory by hand. Every variable

holds more than just the value itself— they also include additional information about the
value's type and size:

Integer in C Integer in Python

@ Size and datatype
= 1 |

Likewise, a Python 1ist is very flexible: it can hold objects of many different types.
But that flexibility comes at a price — because the interpreter has to know what each
element is, every item carries its own notes about type, size, and other details.

When all elements happen to share the same type, most of that extra data is just repeated
over and over! A fixed-type NumPy array avoids this overhead by recording the type
only once and storing all the raw values in one tightly packed block of memory, making it
far more efficient than a dynamic-type list for large, uniform data.

NumPy array

data

items

shape

data type

11

length

NumPy array

Meta data

Meta data

data

items

shape

length

data type

From the figure, we can see that at the implementation level, the array primarily
consists of a single pointer to a contiguous data block. In contrast, the Python 1list
features a pointer to a block of pointers, each of which points to a Python object, such

as a Python integer.

11

All'in all, the primary benefit of the 1ist is its flexibility. Since each 1list elementis a
comprehensive structure containing data and type information, the list can

accommodate data of any type. While fixed-type NumPy arrays do not offer this level
of adaptability

e They are significantly more efficient for storing and manipulating data.

¢ |n addition, we know that every object consists of data and methods. The array
object of the NumPy package not only provides efficient storage of array-based
data but adds to this efficient operation on that data.

In the first step, we need to install NumPy as follows:

In the first step, we need to install NumPy as follows:

package name = "numpy"

try:
__import__ (package name)
print(f"{package name} is already installed.")
except ImportError:
print(f"{package name} not found. Installing...")
%pip install {package name}

numpy is already installed.

The official NumPy documentation recommends importing the numpy module as np so
that we can access its methods with np. :

The official NumPy documentation recommends importing the numpy module as np so
that we can access its methods with np. :

import numpy as np

In [4]: display quiz(path+"list_array.json", max_width=800)

What is printed by the following statements?

zzzz

(2, 4, 6]
[2 4 6]

(1, 2, 31
L= a s [2 4 6]

2. Creating array using different approaches
(Constructors)

2.1 Creating array from fix sequence

The numpy module offers numerous functions to create arrays. In this case, we employ
the array() function, which accepts a sequence of elements and returns a new array
containing the input elements. For instance, let's pass a list:

The numpy module offers numerous functions to create arrays. In this case, we employ
the array() function, which accepts a sequence of elements and returns a new array
containing the input elements. For instance, let's pass a list:

import numpy as np
numbers = np.array([2, 3, 5, 7, 11])
numbers, type(numbers)

(array([2, 3, 5, 7, 11]), numpy.ndarray)

The numpy module offers numerous functions to create arrays. In this case, we employ
the array() function, which accepts a sequence of elements and returns a new array
containing the input elements. For instance, let's pass a list:

import numpy as np
numbers = np.array([2, 3, 5, 7, 11])
numbers, type(numbers)

(array([2, 3, 5, 7, 11]), numpy.ndarray)

The array() function copies its argument's contents into the array . Note that the type
is numpy.ndarray and all the output will prefix the data with the keyword array .

The array() function copies its argument's dimensions. Let's create an array from a
two-row-by-three-column nested list:

The array() function copies its argument's dimensions. Let's create an array from a
two-row-by-three-column nested list:

np.array([[1, 2, 3], [4, 5, 6]]), type(np.array([[1, 2, 3], [4, 5, 6]]))

(array([[1, 2, 3],
[4, 5, 6]1),
numpy .ndarray)

The array() function copies its argument's dimensions. Let's create an array from a
two-row-by-three-column nested list:

np.array([[1, 2, 3], [4, 5, 6]]), type(np.array([[1, 2, 3], [4, 5, 6]]))

(array([[1, 2, 3],
[4, 5, 6]1),
numpy .ndarray)

A 2D array is a sequence of 1D arrays that represent each row.

array Attributes

The array function determines an array's element type from its argument's elements.
We can check the element type with an array's dtype attribute:

The array function determines an array's element type from its argument's elements.
We can check the element type with an array's dtype attribute:

integers = np.array([[1, 2, 3], [4, 5, 6]])
floats = np.array([0.0, 0.1, 0.2, 0.3, 0.4])

integers.dtype, floats.dtype

(dtype('int32'), dtype('float64d'))

The array function determines an array's element type from its argument's elements.
We can check the element type with an array's dtype attribute:

integers = np.array([[1, 2, 3], [4, 5, 6]])
floats = np.array([0.0, 0.1, 0.2, 0.3, 0.4])

integers.dtype, floats.dtype

(dtype('int32'), dtype('float64d'))

In the upcoming section, we will notice that several array-creation functions include a
dtype keyword argument, allowing us to define an array's element type.

The attribute ndim contains an array's number of dimensions and the attribute shape
contains a tuple specifying an array's dimensions:

The attribute ndim contains an array's number of dimensions and the attribute shape
contains a tuple specifying an array's dimensions:

print(integers.ndim)
print(floats.ndim)

2
1

The attribute ndim contains an array's number of dimensions and the attribute shape
contains a tuple specifying an array's dimensions:

print(integers.ndim)
print(floats.ndim)

2
1

print(integers.shape)
print(floats.shape)

(2, 3)
(5,)

The attribute ndim contains an array's number of dimensions and the attribute shape
contains a tuple specifying an array's dimensions:

print(integers.ndim)
print(floats.ndim)

2
1

print(integers.shape)
print(floats.shape)

(2, 3)
(5,)

Here, integers have 2 rows and 3 columns (6 elements) and floats are one-dimensional,
containing 5 floating numbers.

We can view an array's total number of elements with the attribute size and the number
of bytes required to store each element with itemsize:

We can view an array's total number of elements with the attribute size and the number
of bytes required to store each element with itemsize:

print(integers.size)
print(integers.itemsize)
print(floats.size)
print(floats.itemsize)

co vl B~ O

We can view an array's total number of elements with the attribute size and the number
of bytes required to store each element with itemsize:

print(integers.size)
print(integers.itemsize)
print(floats.size)
print(floats.itemsize)

co vl B~ O

Note that the size of the integers is the result of multiplying the values in the tuple —
two rows with three elements each, totaling six elements. In each instance, itemsize is 4
because integers comprise int32 values, and as floats consist of float64 values.

2.2 Filling array with specific values

NumPy offers the functions zeros(), ones(),and full() for creating arrays filled
with Os, Ts, or a specified value, respectively. By default, zeros() and ones() generate
arrays containing float64 values. We will demonstrate how to customize the element
type shortly. The first argument for these functions should be either an integer ora
tuple of integers defining the desired dimensions. When given an integer, each function
returns a one-dimensional array containing the specified number of elements:

NumPy offers the functions zeros(), ones(),and full() for creating arrays filled
with Os, Ts, or a specified value, respectively. By default, zeros() and ones() generate
arrays containing float64 values. We will demonstrate how to customize the element
type shortly. The first argument for these functions should be either an integer ora
tuple of integers defining the desired dimensions. When given an integer, each function
returns a one-dimensional array containing the specified number of elements:

np.zeros(5)

array([@., 0., 0., 0., 0.])

When provided with a tuple of integers, these functions return a multidimensional array

featuring the specified dimensions. We can define the array's element type using the
dtype keyword argument for the zeros() and ones() functions:

When provided with a tuple of integers, these functions return a multidimensional array
featuring the specified dimensions. We can define the array's element type using the

dtype keyword argument for the zeros() and ones() functions:

np.ones((2, 4), dtype=np.int32)

ar‘r\ay([[l) 1} 1) 1])
[1, 1, 1, 111)

The array returned by full() contains elements with the second argument's value
and type:

The array returned by full() contains elements with the second argument's value

and type:
np.full((3, 5), 13+2j), np.full((3, 5), 13+2j).dtype

(array([[13.+2.j, 13.+2.j, 13.+2.j, 13.+2.j, 13.+2.7],
[13.+2.F, 13.+2.j, 13.+42.j, 13.+42.7, 13.+2.7],
[13.+2.F, 13.+2.j, 13.+2.j, 13.+2.j, 13.42.3]11),

dtype('complex128'))

2.3 Creating array from sequence generated by different
methods

Creating sequence with fix step by arange()

We can employ NumPy 's arange() function to create integer ranges, similar to using
the built-in range() function. The first two arguments of the function determine the

starting and ending values of the range, with the ending value excluded from the array.
The optional third argument represents the step size which has a default value of 1:

We can employ NumPy 's arange() function to create integer ranges, similar to using
the built-in range() function. The first two arguments of the function determine the
starting and ending values of the range, with the ending value excluded from the array.

The optional third argument represents the step size which has a default value of 1:

np.arange(5)

array([0, 1, 2, 3, 4])

We can employ NumPy 's arange() function to create integer ranges, similar to using
the built-in range() function. The first two arguments of the function determine the
starting and ending values of the range, with the ending value excluded from the array.

The optional third argument represents the step size which has a default value of 1:
np.arange(5)
array([o, 1, 2, 3, 4])

np.arange(5, 10)

array([5, 6, 7, 8, 9])

We can employ NumPy 's arange() function to create integer ranges, similar to using
the built-in range() function. The first two arguments of the function determine the
starting and ending values of the range, with the ending value excluded from the array.

The optional third argument represents the step size which has a default value of 1:
np.arange(5)
array([o, 1, 2, 3, 4])
np.arange(5, 10)
array([5, 6, 7, 8, 9])
np.arange(10, 1, -2)

array([106, 8, 6, 4, 2])

We can employ NumPy 's arange() function to create integer ranges, similar to using
the built-in range() function. The first two arguments of the function determine the
starting and ending values of the range, with the ending value excluded from the array.

The optional third argument represents the step size which has a default value of 1:
np.arange(5)
array([o, 1, 2, 3, 4])
np.arange(5, 10)
array([5, 6, 7, 8, 9])
np.arange(10, 1, -2)

array([106, 8, 6, 4, 2])

Note that it is the same as range() , which takes three arguments
numpy.arange(start, stop, step) and the first and third arguments can be omitted.

Creating sequence with fix sample number by linspace()

Additionally, we can generate evenly spaced floating-point ranges using NumPy 's
linspace() function. The first two arguments of the function determine the starting and
ending values of the range, with the ending value included in the array . The optional
keyword argument num designates the number of evenly spaced values to create:

Additionally, we can generate evenly spaced floating-point ranges using NumPy 's
linspace() function. The first two arguments of the function determine the starting and
ending values of the range, with the ending value included in the array . The optional
keyword argument num designates the number of evenly spaced values to create:

np.linspace(0.0, 1.0, num=5)

array([e6. , ©0.25, 0.5, 0.75, 1. 1)

Reshaping an array

We can also first create an array using the previous methods and then utilize the
array method reshape() to convert the one-dimensional array into a

multidimensional array. Let's generate an array containing values from 1 to 20 and then
reshape it into a matrix with four rows and five columns:

We can also first create an array using the previous methods and then utilize the
array method reshape() to convert the one-dimensional array into a

multidimensional array. Let's generate an array containing values from 1 to 20 and then
reshape it into a matrix with four rows and five columns:

np.arange(1l, 21).reshape(4, 5)

ar\r\ay([[1) 2) 3) 4) 5])
[6) 7.’ 8) 9) 1@])
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20]])

We can also first create an array using the previous methods and then utilize the
array method reshape() to convert the one-dimensional array into a

multidimensional array. Let's generate an array containing values from 1 to 20 and then
reshape it into a matrix with four rows and five columns:

np.arange(1l, 21).reshape(4, 5)

ar\r\ay([[1) 2) 3) 4) 5])
[6) 7.’ 8) 9) 1@])
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20]])

Note the chained method calls in the previous example. Initially, arange() generates an
array containing values 1 to 20. Then, we invoke reshape() on that array to obtain the
displayed 4-by-5 array. We can reshape() any array as long as the new shape contains
the same number of elements as the original. Thus, a six-element one-dimensional array
can be transformed into a 3-by-2 or 2-by-3 array, and vice versal!

In [19]: display quiz(path+"constructors.json", max_width=850)

What is printed by the following statements?

Example 1: List vs. array performance: Introducing
%htimeit

Most array operations execute significantly faster than corresponding list
operations. To demonstrate, we'll use the %%timeit magic command, which benchmarks
the average duration of operations.

Most array operations execute significantly faster than corresponding list
operations. To demonstrate, we'll use the %%timeit magic command, which benchmarks
the average duration of operations.

import random

Most array operations execute significantly faster than corresponding list
operations. To demonstrate, we'll use the %%timeit magic command, which benchmarks

the average duration of operations.

import random

Here, let's use the random module’s randint() function with a list comprehension to
create a list of six million die rolls and time the operation using %%timeit :

Most array operations execute significantly faster than corresponding list
operations. To demonstrate, we'll use the %%timeit magic command, which benchmarks
the average duration of operations.

import random

Here, let's use the random module’s randint() function with a list comprehension to
create a list of six million die rolls and time the operation using %%timeit :

%%timeit
rolls list = [random.randint(1, 6) for i in range(@, 6 000 000)] # 1is use to

3.66 s £ 11.5 ms per loop (mean * std. dev. of 7 runs, 1 loop each)

Now, let's use the randint() function from the numpy.random module to create an
array

Now, let's use the randint() function from the numpy.random module to create an
array

%ktimeit
rolls array = np.random.randint(1, 7, 6 000 000)

44.1 ms £ 111 ps per loop (mean % std. dev. of 7 runs, 10 loops each)

3. Indexing and slicing (Getter and Setter)

One-dimensional arrays can be indexed and sliced using the same syntax and
techniques applied when handling other sequence data types, such as built-in 1ists or
tuples.

One-dimensional arrays can be indexed and sliced using the same syntax and
techniques applied when handling other sequence data types, such as built-in 1ists or
tuples.

To select an element in a two-dimensional array, specify two indices containing the
element's row and column indices in square brackets:

One-dimensional arrays can be indexed and sliced using the same syntax and

techniques applied when handling other sequence data types, such as built-in 1ists or

tuples.

To select an element in a two-dimensional array, specify two indices containing the

element's row and column indices in square brackets:

grades = np.array([[87, 96, 70], [60, 87, 90],

grades

array([[87,
[60,
[94,
[100,

96,
87,
77,
81,

[94, 77, 92], [100, 81, 82]])

70],
%],
92],

8211)

One-dimensional arrays can be indexed and sliced using the same syntax and

techniques applied when handling other sequence data types, such as built-in 1ists or
tuples.

To select an element in a two-dimensional array, specify two indices containing the
element's row and column indices in square brackets:

grades = np.array([[87, 96, 70], [60, 87, 90],
[94, 77, 92], [1ee0, 81, 82]1])
grades

array([[87, 96, 70],
[60, 87, 90],
[94, 77, 92],
[100, 81, 82]])

grades[0, 1] # row @, column 1

96

To select a single row, we can specify only one index in square brackets:

To select a single row, we can specify only one index in square brackets:
grades, grades[1]

(array([[87, 96, 70],
[60, 87, 90],
[94, 77, 92],
[1e0, 81, 82]]),
array([60, 87, 90]))

To select a single row, we can specify only one index in square brackets:
grades, grades[1]

(array([[87, 96, 70],
[60, 87, 90],
[94, 77, 92],
[1e0, 81, 82]]),
array([60, 87, 90]))

To select multiple sequential rows, use slice notation:

To select a single row, we can specify only one index in square brackets:
grades, grades[1]

(array([[87, 96, 70],
[60, 87, 90],
[94, 77, 92],
[1e0, 81, 82]]),
array([60, 87, 90]))

To select multiple sequential rows, use slice notation:
grades[0:2]

array([[87, 96, 70],
[60, 87, 90]])

To select a single row, we can specify only one index in square brackets:
grades, grades[1]

(array([[87, 96, 70],
[60, 87, 90],
[94, 77, 92],
[1e0, 81, 82]]),
array([60, 87, 90]))

To select multiple sequential rows, use slice notation:
grades[0:2]

array([[87, 96, 70],
[60, 87, 90]])

To select multiple non-sequential rows, use a list of row indices which is called fancy
indexing:

To select a single row, we can specify only one index in square brackets:
grades, grades[1]

(array([[87, 96, 70],
[60, 87, 90],
[94, 77, 92],
[1e0, 81, 82]]),
array([60, 87, 90]))

To select multiple sequential rows, use slice notation:
grades[0:2]

array([[87, 96, 70],
[60, 87, 90]])

To select multiple non-sequential rows, use a list of row indices which is called fancy
indexing:

grades|[[1, 3]]

array([[60, 87, 990],
[100, 81, 82]])

Let's select only the elements in the first column:

Let's select only the elements in the first column:

grades, grades[:, 0]

(array([[87, 96, 70],
[60, 87, 90],
[94, 77, 92],
[1e0, 81, 82]]),
array([87, 60, 94, 100]))

Let's select only the elements in the first column:
grades, grades[:, 0]

(array([[87, 96, 70],
[60, 87, 90],
[94, 77, 92],
[1e0, 81, 82]]),
array([87, 60, 94, 100]))

The 0 after the comma signifies that we are selecting only column 0. The : before the
comma indicates which rows within that column to choose. In this instance, : is a slice
representing all rows. We can also select consecutive columns using a slice:

Let's select only the elements in the first column:
grades, grades[:, 0]

(array([[87, 96, 70],
[60, 87, 90],
[94, 77, 92],
[1e0, 81, 82]]),
array([87, 60, 94, 100]))

The 0 after the comma signifies that we are selecting only column 0. The : before the
comma indicates which rows within that column to choose. In this instance, : is a slice
representing all rows. We can also select consecutive columns using a slice:

grades|[:, 1:3]

array([[96, 70],
[87, 90],
[77, 92],
[81, 82]])

or specific columns with fancy indexing using a list of column indices:

or specific columns with fancy indexing using a list of column indices:
grades, grades[:, [0, 2]]

(array([[87, 96, 70],

[60, 87, 90],

[94, 77, 92],

[1e0, 81, 82]]),
array([[87, 790],

[60, 99],

[94, 92],

[1e0, 82]]))

array is mutable. Therefore, if we want to modify the value of the array, we can use the
previous method and put the result on the left-hand side:

array is mutable. Therefore, if we want to modify the value of the array, we can use the
previous method and put the result on the left-hand side:

print(grades)
grades[3, 2] = 42
grades

[[87 96 70]
[60 87 90]
[94 77 92]
[100 81 82]]

array([[87, 96, 70],
[60, 87, 90],
[94, 77, 92],
[100, 81, 42]])

Views: Shallow copies

Views are objects that see the data in other objects, instead of having their own copies of
the data. Views are also referred to as shallow copies. Several array methods and

slicing operations generate views of an array 's data. The array method view()
returns a new array object with a view of the original array object's data. First, let's
create an array and a view of that array:

Views are objects that see the data in other objects, instead of having their own copies of
the data. Views are also referred to as shallow copies. Several array methods and

slicing operations generate views of an array 's data. The array method view()
returns a new array object with a view of the original array object's data. First, let's
create an array and a view of that array:

numbers = np.arange(1l, 6)
numbers2 = numbers.view()

Views are objects that see the data in other objects, instead of having their own copies of
the data. Views are also referred to as shallow copies. Several array methods and

slicing operations generate views of an array 's data. The array method view()
returns a new array object with a view of the original array object's data. First, let's
create an array and a view of that array:

numbers = np.arange(1l, 6)
numbers2 = numbers.view()

We can use the built-in id() function to verify that numbers and numbers2 are
different objects:

Views are objects that see the data in other objects, instead of having their own copies of
the data. Views are also referred to as shallow copies. Several array methods and

slicing operations generate views of an array 's data. The array method view()
returns a new array object with a view of the original array object's data. First, let's
create an array and a view of that array:

numbers = np.arange(1l, 6)
numbers2 = numbers.view()

We can use the built-in id() function to verify that numbers and numbers2 are
different objects:

id(numbers), id(numbers2)

(2335501871888, 2335501872368)

NumPy also has a handy function called shares_memory() that can be utilized in this
scenario:

NumPy also has a handy function called shares_memory() that can be utilized in this
scenario:

np.shares_memory(numbers, numbers2)

True

NumPy also has a handy function called shares_memory() that can be utilized in this
scenario:

np.shares_memory(numbers, numbers2)

True

To prove that numbers2 views the same data as numbers, let's modify an element in
numbers , then display both arrays:

NumPy also has a handy function called shares_memory() that can be utilized in this
scenario:

np.shares_memory(numbers, numbers2)

True

To prove that numbers2 views the same data as numbers, let's modify an element in
numbers , then display both arrays:

numbers[1] *= 10
numbers

array([1, 20, 3, 4, 5])

NumPy also has a handy function called shares_memory() that can be utilized in this
scenario:

np.shares_memory(numbers, numbers2)

True

To prove that numbers2 views the same data as numbers, let's modify an element in
numbers , then display both arrays:

numbers[1] *= 10
numbers

array([1, 20, 3, 4, 5])
numbers2

array([1, 20, 3, 4, 5])

Similarly, changing a value in the view also changes that value in the original array:

Similarly, changing a value in the view also changes that value in the original array:

numbers2[1] /= 5
numbers, numbers2

(array([1, 4, 3, 4, 5]), array([1, 4, 3, 4, 5]))

Similarly, changing a value in the view also changes that value in the original array:

numbers2[1] /= 5
numbers, numbers2

(array([1, 4, 3, 4, 5]), array([1, 4, 3, 4, 5]))

Slices also create views. Let's make numbers2 a slice that views only the first three
elements of numbers:

Similarly, changing a value in the view also changes that value in the original array:

numbers2[1] /= 5
numbers, numbers2

(array([1, 4, 3, 4, 5]), array([1, 4, 3, 4, 5]))

Slices also create views. Let's make numbers2 a slice that views only the first three
elements of numbers:

numbers2 = numbers[0:3]
numbers2

array([1, 4, 3])

Now, let's modify an element both arrays share, then display them. Again, we see that
numbers2 is a view of numbers :

Now, let's modify an element both arrays share, then display them. Again, we see that
numbers2 is a view of numbers :

numbers[1] *= 20
numbers

array([1, 80, 3, 4, 5])

Now, let's modify an element both arrays share, then display them. Again, we see that
numbers2 is a view of numbers :

numbers[1] *= 20
numbers

array([1, 80, 3, 4, 5])
numbers2

array([1, 80, 3])

Now, let's modify an element both arrays share, then display them. Again, we see that
numbers2 is a view of numbers :

numbers[1] *= 20
numbers

array([1, 80, 3, 4, 5])
numbers2

array([1, 80, 3])

Note that this behavior is different from list, where the slicing will create a new sub
list!

Deep Copies

While views are distinct array objects, they save memory by sharing element data with
other arrays . Nonetheless, when dealing with mutable values, it is occasionally essential
to create a deep copy containing independent copies of the original data.

While views are distinct array objects, they save memory by sharing element data with
other arrays . Nonetheless, when dealing with mutable values, it is occasionally essential
to create a deep copy containing independent copies of the original data.

The array method copy() returns a new array object with a deep copy of the
original array object's data. First, let's create an array and a deep copy of that array :

While views are distinct array objects, they save memory by sharing element data with
other arrays . Nonetheless, when dealing with mutable values, it is occasionally essential
to create a deep copy containing independent copies of the original data.

The array method copy() returns a new array object with a deep copy of the
original array object's data. First, let's create an array and a deep copy of that array :

numbers = np.arange(l, 6)
numbers2 = numbers.copy()

To prove that numbers2 has a separate copy of the data in numbers, let's modify an
element in numbers, then display both arrays:

To prove that numbers2 has a separate copy of the data in numbers, let's modify an
element in numbers, then display both arrays:

numbers[1] *= 5
numbers

array([1, 10, 3, 4, 5])

To prove that numbers2 has a separate copy of the data in numbers, let's modify an
element in numbers, then display both arrays:

numbers[1] *= 5
numbers

array([1, 10, 3, 4, 5])
numbers2

array([1, 2, 3, 4, 5])

In [44]: display_quiz(path+"view copy.json", max_width=850)

What is printed by the following statements?

1o =o = 1o =o =
x = mo ' 2 =o
EY = = 1o zo =
rioe =o = e =o =

More about Reshaping and Transposing

We've used array method reshape() to produce two-dimensional arrays from one-
dimensional ranges. NumPy provides various other ways to reshape arrays.

Both the reshape() and resize() array methods allow us to alter an array's
dimensions. The reshape() method returns a view (shallow copy) of the original array
with updated dimensions, leaving the original array unaltered:

Both the reshape() and resize() array methods allow us to alter an array's
dimensions. The reshape() method returns a view (shallow copy) of the original array
with updated dimensions, leaving the original array unaltered:

grades = np.array([[87, 96, 70], [99, 87, 90]])
grades

array([[87, 96, 70],
[99, 87, 90]])

Both the reshape() and resize() array methods allow us to alter an array's
dimensions. The reshape() method returns a view (shallow copy) of the original array
with updated dimensions, leaving the original array unaltered:

grades = np.array([[87, 96, 70], [99, 87, 90]])
grades

array([[87, 96, 70],
[99, 87, 90]])

grades2 = grades.reshape(1l, 6)

Both the reshape() and resize() array methods allow us to alter an array's
dimensions. The reshape() method returns a view (shallow copy) of the original array
with updated dimensions, leaving the original array unaltered:

grades = np.array([[87, 96, 70], [99, 87, 90]])

grades

array([[87, 96, 70],
[99, 87, 90]])

grades2 = grades.reshape(1l, 6)

grades2[0, 0] = ©
grades2, grades

(array([[©, 96, 70, 99, 87, 90]]),
array([[o, 96, 70],
[99, 87, 90]]))

A widely used technique involves using -1 to specify the shape in reshape() . The
length of the dimension set to -1 is automatically deduced based on the specified values
of other dimensions:

A widely used technique involves using -1 to specify the shape in reshape() . The
length of the dimension set to -1 is automatically deduced based on the specified values
of other dimensions:

grades, grades.reshape(-1, 3) # Same as grades.reshape(2, 3)

(array([[@, 96, 70],
[99, 87, 90]]),

array([[o, 96, 70],
[99, 87, 90]]))

A widely used technique involves using -1 to specify the shape in reshape() . The
length of the dimension set to -1 is automatically deduced based on the specified values
of other dimensions:

grades, grades.reshape(-1, 3) # Same as grades.reshape(2, 3)

(array([[@, 96, 70],
[99, 87, 90]]),

array([[o, 96, 70],
[99, 87, 90]]))

Method resize(), on the other hand, modifies the original array 's shape in-place:

A widely used technique involves using -1 to specify the shape in reshape() . The
length of the dimension set to -1 is automatically deduced based on the specified values
of other dimensions:

grades, grades.reshape(-1, 3) # Same as grades.reshape(2, 3)

(array([[@, 96, 70],
[99, 87, 90]]),

array([[o, 96, 70],
[99, 87, 90]]))

Method resize(), on the other hand, modifies the original array 's shape in-place:

grades.resize(1l, 6)
grades

array([[o, 96, 70, 99, 87, 90]])

We can also do the opposite operation, which takes a multidimensional array and flatten
it into a single dimension with the methods flatten() . Method flatten() deep

copies the original array's data:

We can also do the opposite operation, which takes a multidimensional array and flatten
it into a single dimension with the methods flatten() . Method flatten() deep

copies the original array's data:

grades = np.array([[87, 96, 70], [99, 87, 90]])
grades

array([[87, 96, 70],
[99, 87, 90]])

We can also do the opposite operation, which takes a multidimensional array and flatten
it into a single dimension with the methods flatten() . Method flatten() deep

copies the original array's data:

grades = np.array([[87, 96, 70], [99, 87, 90]])
grades

array([[87, 96, 70],
[99, 87, 90]])

flattened = grades.flatten()
flattened

array([87, 96, 70, 99, 87, 90])

We can also do the opposite operation, which takes a multidimensional array and flatten
it into a single dimension with the methods flatten() . Method flatten() deep

copies the original array's data:

grades = np.array([[87, 96, 70], [99, 87, 90]])
grades

array([[87, 96, 70],
[99, 87, 90]])

flattened = grades.flatten()
flattened

array([87, 96, 70, 99, 87, 90])

flattened[0] = 100
grades # Original array does not change

array([[87, 96, 70],
[99, 87, 90]])

Additionally, we can transpose an array 's rows and columns, the T attribute returns a
transposed view of the array.

Assume that the original grades array presents two students' grades (the rows) across

three exams (the columns). Let's transpose the rows and columns to examine the data as
the grades for three exams (the rows) taken by two students (the columns):

Additionally, we can transpose an array 's rows and columns, the T attribute returns a
transposed view of the array.

Assume that the original grades array presents two students' grades (the rows) across

three exams (the columns). Let's transpose the rows and columns to examine the data as
the grades for three exams (the rows) taken by two students (the columns):

grades.T

array([[87, 99],
[96, 87],
[70, 90]])

Additionally, we can transpose an array 's rows and columns, the T attribute returns a
transposed view of the array.

Assume that the original grades array presents two students' grades (the rows) across

three exams (the columns). Let's transpose the rows and columns to examine the data as
the grades for three exams (the rows) taken by two students (the columns):

grades.T

array([[87, 99],
[96, 87],
[70, 90]])

Transposing does not modify the original array:

Additionally, we can transpose an array 's rows and columns, the T attribute returns a
transposed view of the array.

Assume that the original grades array presents two students' grades (the rows) across

three exams (the columns). Let's transpose the rows and columns to examine the data as
the grades for three exams (the rows) taken by two students (the columns):

grades.T

array([[87, 99],
[96, 87],
[70, 90]])

Transposing does not modify the original array:
grades

array([[87, 96, 70],
[99, 87, 90]])

Finally, we can combine arrays by adding more columns or more rows — known as
horizontal stacking and vertical stacking. Let's first create another 2-by-3 array of
grades:

Finally, we can combine arrays by adding more columns or more rows — known as
horizontal stacking and vertical stacking. Let's first create another 2-by-3 array of
grades:

grades2 = np.array([[94, 77, 90], [1l00, 81, 82]])
grades?2

array([[94, 77, 99],
[100, 81, 82]])

Finally, we can combine arrays by adding more columns or more rows — known as
horizontal stacking and vertical stacking. Let's first create another 2-by-3 array of
grades:

grades2 = np.array([[94, 77, 90], [1l00, 81, 82]])
grades?2

array([[94, 77, 99],
[100, 81, 82]])

Suppose grades2 represents three more exam grades for the two students in the
grades array. We can merge grades and grades2 using NumPy 's hstack()
(horizontal stack) function by passing a tuple containing the arrays to combine. The
extra parentheses are necessary because hstack() expects a single argument:

Finally, we can combine arrays by adding more columns or more rows — known as
horizontal stacking and vertical stacking. Let's first create another 2-by-3 array of
grades:

grades2 = np.array([[94, 77, 90], [1l00, 81, 82]])
grades?2

array([[94, 77, 99],
[100, 81, 82]])

Suppose grades2 represents three more exam grades for the two students in the
grades array. We can merge grades and grades2 using NumPy 's hstack()
(horizontal stack) function by passing a tuple containing the arrays to combine. The
extra parentheses are necessary because hstack() expects a single argument:

np.hstack((grades, grades2))

array([[87, 96, 70, 94, 77, 99],
[99, 87, 90, 100, 81, 82]])

Moving forward, let's suppose that grades2 represents the grades of two additional
students on three exams. In this scenario, we can combine grades and grades2 using
NumPy 's vstack() (vertical stack) function:

Moving forward, let's suppose that grades2 represents the grades of two additional
students on three exams. In this scenario, we can combine grades and grades2 using
NumPy 's vstack() (vertical stack) function:

np.vstack((grades, grades2))

array([[87, 96, 790],
[99, 87, 90],
[94, 77, 90],
[100, 81, 82]])

Exercise 1. Suppose we are developing a chess game and the
chess game provide two special checkerboards as follows:

We decide to use 1 to represent the white square and 0 to represent the black square.
Write a program to create two 2D arrays to represent the two checkerboards as follows:

[[1,
[0,
[1,
[0,
[1,
[0,

[[1,
[0,

[1,

-

-

-

-

O R, O PO FRPOFLO
[SEW - -

-

- -

-

-

O FRLPOFRO0OR
- -

RO R
“ e

-

-

-

-

O R, O PO FRPOFLO
[SEW - -

-

- -

-

-

O FRLPOFRO0OR
- -

RO R
“ e

o],
1],
0],
1],
0],
1]]
@, 0, 1, 0, 1, 0, 1],
1, 1, o, 1, o, 1, o],
0, 0, 1, 0, 1, 0, 1]]

)

-
-
-
-
-

Note you should not directly hardcode the above arrays. You should use Numpy methods

to create the arrays. After you have finished the exercise, you can print out the
checkerboard using the following code cell.

In [] # Your answer here

chbl = np.ones((_,), dtype=int)
chbl[,] 0

chbl[,] %)

chbl

In []t # Your answer here
chbl = np.ones((_,), dtype=int)

chbl[,] =20
chbl[,] =20
chbl
In [1t # Your answer here
chb2 = np. ((chbi[_, 1, chbi[___, 1))
chb2

Plot the checkerboard
package name = "matplotlib"

try:
__import__ (package name)
print(f"{package name} is already installed.")
except ImportError:

print(f"{package_name} not found. Installing...")
%pip install {package name}

import matplotlib.pyplot as plt

plt.imshow(chb2, cmap='gray")
plt.show()

4. NumPy calculation methods (Reduction)

An array includes several methods that carry out computations based on its contents.

By default, these methods disregard the array's shape and utilize all the elements in
the calculations.

An array includes several methods that carry out computations based on its contents.
By default, these methods disregard the array's shape and utilize all the elements in
the calculations.

For instance, when computing the mean of an array, it sums all of its elements irrespective
of its shape, and then divides by the total number of elements. We can also execute
these calculations on each dimension. For example, in a two-dimensional array, we can
determine the mean of each row and each column.

grades = np.array([[87, 96, 70], [100, 87, 99],

grades

array([[87,
[100,
[94,
[100,

96,
87,
77,
81,

[94, 77, 90], [100, 81, 82]])

70],
%9],
%9],
8211)

grades = np.array([[87, 96, 70], [1e0, 87, 90],

grades

array([[87, 96,

[100, 87,
[94, 77,
[100, 81,

We can use methods to calculate sum(), min(), max(), mean(), std() (standard
deviation) and var() (variance) — each is a functional-style programming reduction:

[94, 77, 90], [100, 81, 82]])

70],
%9],
%9],
8211)

grades = np.array([[87, 96, 70], [1e0, 87, 90],
[94, 77, 90], [100, 81, 82]])
grades

array([[87, 96, 70],
[100, 87, 990],
[94, 77, 990],
[100, 81, 82]])

We can use methods to calculate sum(), min(), max(), mean(), std() (standard
deviation) and var() (variance) — each is a functional-style programming reduction:

print(grades.sum())
print(grades.min())
print(grades.max())
print(grades.mean())
print(grades.std())
print(grades.var())

1054

70

100
87.83333333333333
8.792357792739987
77.30555555555556

Calculations by Row or Column

Numerous calculation methods can be applied to specific array dimensions, referred to
as the array 's axes. These methods accept an axis keyword argument that designates
the dimension to be utilized in the calculation, providing a convenient means to perform
computations by row or column in a two-dimensional array .

Suppose we want to find the maximum grade for each exam, represented by the columns
of grades . By specifying axis=0, the calculation is performed on all the row values

within each column:

Suppose we want to find the maximum grade for each exam, represented by the columns
of grades . By specifying axis=0, the calculation is performed on all the row values
within each column:

grades, grades.max(axis=0), grades.argmax(axis=0)

(array([[87, 96, 70],

[100, 87, 90],

[94, 77, 90],

[1e0, 81, 82]]),
array([100, 96, 90]),
array([1, 0, 1], dtype=int64))

Suppose we want to find the maximum grade for each exam, represented by the columns
of grades . By specifying axis=0, the calculation is performed on all the row values

within each column:
grades, grades.max(axis=0), grades.argmax(axis=0)

(array([[87, 96, 70],

[160, 87, 90],

[94, 77, 90],

[1e0, 81, 82]]),
array([100, 96, 90]),
array([1, 0, 1], dtype=int64))

Here, 100 is the maximum value in the first column and its corresponding index (row) is 1
(if there are duplicate elements, the index of the first element will be reported). 96 and 90
are the maximum values in the second and third columns, respectively.

Suppose we want to find the maximum grade for each exam, represented by the columns
of grades . By specifying axis=0, the calculation is performed on all the row values

within each column:
grades, grades.max(axis=0), grades.argmax(axis=0)

(array([[87, 96, 70],

[160, 87, 90],

[94, 77, 90],

[1e0, 81, 82]]),
array([100, 96, 90]),
array([1, 0, 1], dtype=int64))

Here, 100 is the maximum value in the first column and its corresponding index (row) is 1
(if there are duplicate elements, the index of the first element will be reported). 96 and 90
are the maximum values in the second and third columns, respectively.

grades, grades.mean(axis=0)

(array([[87, 96, 70],

[100, 87, 90],

[94, 77, 990],

[1e0, 81, 82]]),
array([95.25, 85.25, 83. 1))

Similarly, specifying axis=1 performs the calculation on all the column values within
each individual row. To determine each student's average grade for all exams, we can use:

Similarly, specifying axis=1 performs the calculation on all the column values within
each individual row. To determine each student's average grade for all exams, we can use:

grades.mean(axis=1)

array([84.33333333, 92.33333333, 87. , 87.66666667])

Similarly, specifying axis=1 performs the calculation on all the column values within
each individual row. To determine each student's average grade for all exams, we can use:

grades.mean(axis=1)

array([84.33333333, 92.33333333, 87. , 87.66666667])

This generates four averages — one for the values in each row. Therefore, 84.33333333 is
the average of row 0's grades (87, 96, and 70), and the other averages correspond to the
remaining rows. For more methods, refer to
https://numpy.org/doc/stable/reference/arrays.ndarray.html.

axis 0

axis 1

Exercise2: Find the maximum and minimum values of the function
f(z) = z? on the interval [—3, 5] by substituting 1000 evenly

spaced numbers between —3 and 5 into the function. What is the
corresponding a value for the maximum and minimum values and
how do they compare with the actual values?

Hint: You may find np.linspace(), np.max()/np.min() and
np.argmax()/np.argmin() useful.

< X 2 #H#

y_max
y_min
X_max
X_min

print(
print(

Your answer here
= 1000 # Number of points to sample in the 1interval
= np. (, , hum=N) # Create 1000 evenly spaced values from -3 to 5

Compute y = x2 for every x in the array

= np.___ (y) # Largest value of y (the maximum of the parabola on this 1
np. _ (y) # Smallest value of y (the minimum of the parabola on this
x[np.___ (y)] # x-value at which y reaches its maximum

x[np. (y)] # x-value at which y reaches its minimum

"max y=", y max, "x=", x_max)
"min y=", y min, "x=", x_min)

In [63]: from jupytercards import display flashcards
fpath= "flashcards/"
display flashcards(fpath + 'ch9-1.json')

Array-Oriented Programming

Next

	Introduction
	Creating array
	Using fix sequence
	array attributes
	Using specific values
	Using sequence that has pattern
	Reshaping an array

	Indexing and slicing
	Views: Shallow copies
	Deep copies

	More about reshaping and transposing
	NumPy calculation methods (Reduction)
	Calculation by row or column

